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Thermodynamic construction of a one-step replica-symmetry-breaking solution
in finite-connectivity spin glasses
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A one-step replica-symmetry-breaking solution for finite-connectivity spin-glass models with K body inter-
action is constructed at finite temperature using the replica method and thermodynamic constraints. In the
absence of external fields, this construction provides a general extension of replica symmetric solution at finite
replica number to one-step replica-symmetry-breaking solution. It is found that this result is formally equiva-
lent to that of the one-step replica-symmetry-breaking cavity method. To confirm the validity of the obtained
solution, Monte Carlo simulations are performed for K=2 and 3. The thermodynamic quantities of the Monte
Carlo results extrapolated to a large-size limit are consistent with those estimated by our solution for K=2 at
all simulated temperatures and for K=3 except near the transition temperature.
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I. INTRODUCTION

Since the celebrated paper by Edwards and Anderson [1],
mean-field theory of spin glass (SG) has been extensively
investigated. The replica theory [2,3] is one of the most suc-
cessful achievement that has revealed the nature of the low-
temperature phase of mean-field SG models. Parisi’s pioneer-
ing work provided the replica method with implementation
of replica-symmetry-breaking (RSB). Originally, K-step RSB
(KRSB) was proposed as “a sequence of approximated solu-
tions” to the true solution and the full RSB solution was
derived as a K—oc limit. This approach has actually proven
to be exact recently [4] for the Sherrington-Kirkpatrick (SK)
model [5]. Although this introduction of RSB is motivated
by de Almeida-Thouless (AT) condition [6], which is the
instability of replica symmetric (RS) solution with respect to
replica couplings, it should be noted that AT instability is
only one of the possible scenario for RSB [7] and that the
origin of RSB is in general model dependent. In addition, a
IRSB solution for various mean-field SG models [8,9] is
stable with respect to further RSB perturbation and KRSB
rarely appears for K=2. These facts suggest that there is
another mechanism to break the replica-symmetry and it dis-
tinguishes 1RSB from full RSB (FRSB).

Recently, the authors have shown [10] that p-body SK
model, which is a typical model to exhibit a SG transition to
1RSB phase, actually has another reason to break the replica-
symmetry above the Gardner temperature [8]. It is the mono-
tonicity condition of the cumulant generating function of the
free-energy ¢(n), whose limiting value at n=0 is the aver-
aged free energy rather than the AT condition that causes
RSB [10]. The relevance of these conditions is reversed at
the Gardner temperature, where the transition between 1RSB
and full RSB takes place. Furthermore, it is proved that if the
monotonicity is broken in the absence of external field,
which ensures the smallest overlap parameter g,=0, then the
correct 1RSB solution is given by the RS solution at n,,
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which is defined as the monotonicity breaking point, i.e.,
¢'(n,,)=0. This has revealed that the continuation of the cu-
mulant generating function ¢(n) to ¢(0) is strongly restricted
by a kind of thermodynamic constraints and that it naturally
induces the 1RSB solution in the case of a fully connected
mean-field SG model. Regarding n as a fictitious inverse
temperature, we can resort to the thermodynamics for ex-
tracting high temperature or replica limit (n— 0) from low-
temperature behavior (n>1). These facts strongly suggest
that 1RSB is a consequence of the monotonicity breaking
and FRSB is that of AT stability breaking.

Finite connectivity SG model has been considered as a
first nontrivial extension of the mean-field theory and chal-
lenged in many literatures. As a straightforward extension
from the case of fully connected model, perturbation theories
in the region of the large connectivity or near the transition
temperature have been studied in the replica formalism
[11,12]. Another replica calculation [ 13—15] has succeeded to
derive an exact expression of the free energy under a non-
trivial ansatz called factorized ansatz. The difficulty in these
works appears in the search for an RSB saddle point because
RSB is defined using the symmetry of a saddle point in the
theory. In contrast, the cavity method turned out to be an
alternative and promising approach to study the finite-
connectivity models within 1RSB scheme [13,16-19]. The
key concept of this method is the complexity [20] logarithm
of a number of the pure states, which enables one to deeply
understand the microscopic structure of configuration space.
It is found that the non-negativity condition of the complex-
ity is relevant for the 1RSB cavity scheme that provides a
general procedure for mean-field type models including
finite-connectivity SG.

In this paper, we further examine the possibility of IRSB
scenario suggested in our previous work, which might be
important for a better understanding of the SG theory and
also the replica method itself. The model discussed is a
finite-connectivity Ising SG model with K-body interactions.
The reason why this model is considered as a good example
is twofold. First our construction of 1RSB solution is appli-
cable to the finite-connectivity SG model because RS solu-
tion can be explicitly obtained. Second, we see a direct cor-
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respondence between the guiding principle of introducing
IRSB in the replica method and the cavity method [13].

The organization of this paper is as follows. In Sec. II, we
review our previous work [10] for complete and detailed
instructions of our scheme, in which a construction of a
IRSB solution from RS ansatz is explained. Then a SG
model defined on a sparse random graph is introduced and
the 1RSB solution for the model obtained by our scheme is
presented. We also discuss a relationship between our
scheme based on the replica theory and the cavity method for
the model. In Sec. III, we compare the 1RSB solution to the
result by MC simulation. Finally Sec. IV is devoted to our
conclusions and discussions.

II. MODEL AND REPLICA ANALYSIS
A. Preliminary

In this section, we briefly review our previous work [10]
and explain our scheme for the construction of a 1RSB so-
Iution in a general manner. For a given Hamiltonian H equi-
librium statistical mechanics requires to calculate the parti-
tion function Z=Tr exp(—BH), where Tr denotes the sum
over all possible configurations of the dynamical variables
and B=1/T is the inverse temperature. In the case of disor-
dered system, one may evaluate Z(J) for quenched disorder J
and take average of log Z(J) over J with an appropriate
weight. Using the replica method [3], the averaged free-
energy [F] is rewritten as a limit of cumulant generating
function ¢(n) of F(J) as

: L n =:|i n
[F]=rlzl~r>r(l){_ Nﬁnlog[z ]} = ilir(l) P(n), (1)

where [ - - -] denotes the average with respect to the quenched
disorder.

In case where n is a real number, to proceed the calcula-
tion of the right-hand side in Eq. (1) needs some ansatz. A
typical one is replica symmetric (RS) ansatz, which is con-
sidered to be correct only for sufficiently large n. We denote
the solution based on the RS ansatz as RS solution ¢yg(n).
Thus, the limit of ¢(n) we are interested in becomes non-
trivial when we have no alternatives except the RS solution.

In general, however, the function ¢(n) is restricted by the
following conditions: ¢'(n)=<0 (monotonicity), {n¢(n)}”
=0 (convexity), and AT stability. The two former conditions,
monotonicity and convexity, come from a thermodynamic
restriction if the replica number # is regarded as a “tempera-
ture.” In particular, they lead to the following proposition

[10]

if ¢'(n,)=0 for n,>0,

then ¢(n)= $(0) for

0=n=n,,.

Therefore, if the RS solution is valid for n=n,,, the limit n
—0 is performed by this proposition. Figure 1 shows how
the function ¢ is connected to the origin. It is also shown
[10] that the solution ¢gg(n,,) corresponds to the 1RSB so-
lution for a wide class of models with ¢,=0 not restricted to
the fully connected models. This relationship has already
been pointed out in a solvable model [21].
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FIG. 1. A schematic figure of ¢(n) as a function of the replica
number n. This shows the construction of a 1RSB solution using
monotonicity and convexity condition. The dashed line represents
RS solution, which breaks the monotonicity condition at n=n,,.
Below n,,, ¢(n) becomes a constant function down to zero, corre-
sponding to the 1RSB solution.

The proposition provides us a simple construction of a
IRSB solution using only the RS solution. We summarize
our procedure for the 1RSB construction as follows:

(1) Calculate the RS solution ¢rg(n) as a function of the
finite replica number n.

(2) Find the value n,, which satisfies ¢pq(n,,)=0.

(3) Set

B(0) = drs(n,,). 2)

While the right-hand side of Eq. (2) is analytically tractable
but doubtful for n<< 1 because of the RS ansatz, the left-hand
side is equal to the free energy as stated in Eq. (1) but ana-
lytically intractable.

One may notice that this procedure is analogous to the
original saddle-point method, if one identifies the replica
number with the breaking parameter. We consider this corre-
spondence as the reason why we have to maximize with
respect to the breaking parameter in literatures. It should be
noted that this procedure can apply to any model in which
the RS solution is explicitly obtained for any real n. Our
procedure does not require overlap matrix or the introduction
of breaking parameter.

B. Model

Hereafter we deal with a finite-connectivity Ising SG
model. The Hamiltonian with K-spin interactions on a regu-
lar random graph with connectivity C is defined as:

H=- EQDMNMI)%@)"‘%(K» 3)
MnE

where

G={u={u(1), -, u(K)} ;

p(i) € {1,2, -+ .N}pu(i) # u(i)(i # j)}- 4)

Here o,=*1 represents Ising spins on the random graph
with N sites. The interactions J,, take *1 with equal prob-
ability which gives the unit of energy and temperature. D,
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=0,1 are quenched variables, satisfying the condition
by D, =C for each site i, namely all the sites having
negiep™ =

the same number of the neighbors C.

C. Solutions for 1RSB

We calculate the cumulant generating function of the
model described above within the framework of Sec. I A.
Following the calculation [22-24], ¢(n) under the RS ansatz
is evaluated as

£log{cosh( B}

¢Rs(n) = KB

_ L t —logI,—Clog I, +logI;{, (5)
extr, - 0 (o) (o) ,
B w7 g 1 g 13 g 13

where

n

K K
11 dxkﬂ'(xk)% > 4 1+tanh(BJ M)H tanh(Bx,) ( ,
k=1 k=1

Jﬂ=t1

(6)

L= f dxdim(x)(£){1 + tanh(Bx)tanh(B%)}", (7)

C C
L= | [ d&,a)) [T{1+tanh(Bz,)}
y=1 y=1

C
+ 1 {1 -tanh(Bs,)} [ . (8)
y=1

Differentiating ¢rg with respect to 7 and 7, we have the
saddle-point equations

C-1

(x) = ;2 H di, ()| [T {1 +tanh(B%,)}
3 y=1
C-1 n C-1
+]1{1- tanh(3%,)} 5(x— > fy) , 9)
y=1 y=1

(%) == H dxk’“'(xk) E

1
X — —atanh
I 21 ==*] B

K-1
X (tanh (B1,) 11 tanh(Bxy) )) . (10)
k=1

We solve Egs. (9) and (10) for each n numerically and obtain
the saddle-point functions 7(x) and 7r(£X). Details for the nu-
merical method we use to solve these equations are shown in
the Appendix. Inserting the saddle-point functions into Eq.
(5), we evaluate ¢gg(n) as a function of n. Figure 2 shows an
example of ¢rg(n) plotted against n for K=3 and C=4 at
T=0.33, which is well below the expected SG transition tem-
perature, T.~0.65. As shown in the figure, ¢gs(n) violates
the monotonicity condition at a certain value n,,(T) which is
defined by ¢gs(n,,)=0.
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FIG. 2. Replica number n dependence of ¢rg(n) of a finite-
connectivity Ising SG for K=3 and C=4 at 7=0.33.

Following our scheme mentioned above, this is enough to
construct a IRSB solution. The 1RSB free energy per site f
is given as f=d¢grg(n,,). It would be interesting to see the
information of finite replica number is used to describe the
IRSB free energy. This is a consequence of the thermody-
namic construction with which the RS solution is connected
to the physical limit n—0.

We have evaluated ¢gg(n) at 0=n=<1 for K=2 and K
=3, which yields temperature dependence of the 1RSB free
energy shown later. For comparison, we also evaluate an RS
free energy, which is defined as ¢rg(0). Temperature depen-
dence of n,, for some values of C is plotted for K=2 and 3 in
Fig. 3. We also show the parameter m for K=2 and C=4 in
Fig. 3, evaluated in Ref. [18]. They are in good agreement
with each other. The transition temperature for K=2 is de-
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FIG. 3. (Color online) Temperature dependence of n,, for K=2
(top panel) and for K=3 (bottom panel). Temperature is scaled as
T(C)=TVK/2C. Each mark represents n,, for connectivity C=4, 6
and 8. The solid line represents n,, for K-body Sherrington-
Kirkpatrick model with Gaussian interaction. In the top panel, ther-
modynamic value of 1RSB parameter for K=2 and C=4 evaluated
in Ref. [18] is also shown in filled circle.
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rived from the condition that the instability condition of
7(x)=8(x) and then n,, begin to deviate from zero. The es-
timate of 7, is consistent with the known expression 7.
=1/atanh(C—1) [25] considering an appropriate factor
\V1/C. For K=3, T, is determined by an onset temperature at
which the monotonicity breaking point emerges. Then, n,,
deviates from unity, which is often observed in some models
exhibiting 1RSB transition. While the analytic expression of
T. for K=3 has not known yet, the estimate for C=4 and 8 is
consistent with that obtained by the cavity method [16].

Here we compare our scheme to the established cavity
method, in particular for the finite-connectivity Ising SG
model [16]. The saddle-point equations, Egs. (9) and (10), in
our scheme are the same as the recursion equation derived as
Egs. (3) and (4) in Ref. [16], when the functions 7 and 7 are
identified as the distribution of cavity field and cavity bias,
respectively. While the parameter n is determined by the
monotonicity condition ¢'(n)=0, the 1RSB parameter m in
the cavity context is determined by the non-negativity con-
dition of the complexity 3:

3(f(m)) = ' (m) = 0 (11)

within the formalism of Monasson [20,26]. This means that
these two methods are equivalent when the complexity is a
well-defined quantity.

In the previous works [13,14,16], it is shown that the
result of the cavity method corresponds to that of the replica
method with a factorized ansatz for the finite-connectivity
models. Thus, our construction is also equivalent to the rep-
lica theory with the factorized ansatz. In the formalism, the
replica number 7 is substituted for the breaking parameter m
in the expression of free energy without taking the limit
n—0. Then, the maximization of the free energy with re-
spect to the overlap parameter ¢ and breaking parameter m is
equivalent to the monotonicity breaking condition in our
scheme. This reasoning does not give a correctness proof of
the factorized ansatz (and also our) solution, but we convince
ourselves that it reveals the reason why the factorized ansatz
gives numerically correct solution.

III. VERIFICATION BY NUMERICAL SIMULATION
A. Monte Carlo method

In the previous section, we obtain the IRSB solution for
the Ising SG model with K-body interactions by using our
scheme. This is the true solution if the AT instability or oth-
ers would not occur above n,,, but it is difficult to examine
the validity of ¢rg(n). This situation is similar to the case of
the cavity method. Instead, here we verify our 1RSB solution
by comparing it to Monte Carlo (MC) data. We use exchange
MC method [27] in order to accelerate relaxation time to
equilibrium. The number of temperatures is fixed to be 30
and the lowest temperature is down to 0.5 for all the system
sizes N and K. The simulation parameters for K=2 and K
=3 are presented in Tables I and II, respectively. Equilibra-
tion of the MC simulations is confirmed by seeing that the
observed quantities are stable within range of error by dou-
bling MC steps.
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TABLE I. Parameters of simulation in the case of K=2 and C
=4. The total number of Monte Carlo steps 2Nyics and the total
number of samples N are presented for each size N. The first Nyics
are discarded for equilibration and the subsequent Nycg are used in
measurement.

N Nucs Ny

32 1X10° 4096
48 2x10° 2048
64 4%10° 1024
128 3%x10° 512
256 5% 107 128
512 5% 108 30

By using the MC simulation we measure the energy ex(T)
per site and calculate the free-energy f(7) per site by ther-
modynamic integration:

fN(T)=wadT’m?;), (12)
T
and the entropy sy(7T) per site as

sy(T) = M' (13)

T

Through the data at discrete temperatures obtained by the
exchange MC method, the energy as a continuous function of
T is evaluated by reweighting formula [28]

(A( o-)e(ﬁo_ﬂ)H(”))](\fg)
(BB )

(Ao = (14)

where (---){&. denotes the MC average at the inverse tem-
perature 8. We apply this formula by setting 3, as actually
simulated temperature and B as required one. We choose 3,
as the nearest temperature to 8 from the whole set of simu-
lated temperatures.

TABLE II. Parameters of simulation in the case of K=3 and
C=4. The total number of Monte Carlo steps 2Ny cs and the total
number of samples NN are presented for each size N. The first Nyics
are discarded for equilibration and the subsequent Ny;cg are used in
measurement.

N Nwmces N

30 1X10° 4096
36 1X10° 4096
45 2% 10° 2048
60 4% 10° 1024
75 8x10° 1024
120 3% 10° 512
240 1 X108 128
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FIG. 4. (Color online) Temperature dependence of energy (top
panel), free energy (middle panel), and entropy(bottom panel) for a
finite-connectivity Ising SG with K=2 and C=4. MC results are
shown by filled marks for N=64, 128, 256, and 512 from the top.
Open squares and open circles are the results of the 1RSB solution
and the RS one, respectively. The paramagnetic solution is pre-
sented by the dotted line and the frozen ansatz is solid line.

B. Results

We display thermodynamic quantities, energy, free en-
ergy, and entropy, obtained by MC simulations, together with
the RS and 1RSB solutions for K=2 and C=4 in Fig. 4 and
for K=3 and C=4 in Fig. 5. The data show that in the case of
K=2, the RS and 1RSB solutions are close to each other, but
the 1RSB free energy is always greater than the RS one by
definition.

For T>T.,, the correct solution is given by the paramag-
netic one, which is described by (x)=7(x) = 8(x). For com-
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FIG. 5. (Color online) Temperature dependence of energy (top
panel), free energy (middle panel), and entropy (bottom panel) for a
finite-connectivity Ising SG with K=3 and C=4. MC results are
shown by filled marks for N=30, 60, 120, and 240 from the top.
Details of the lines are the same as those of Fig. 4.

parison, we also plot a practical solution based on frozen
ansatz [29], in which the paramagnetic solution is used at
T>T, and the entropy is kept to zero at T<<T,. Here T, is
defined as the temperature at which the entropy given by the
paramagnetic solution is zero. This ansatz leads to the results
that the free energy as well as the energy is independent of T
below T,. The frozen ansatz is interpreted as a paramagnetic
solution on which the monotonicity condition as a function
of temperature is imposed. Although the true free energy
must be a monotonically decreasing function of temperature
in a standard thermodynamic sense, it might not be a suffi-
cient condition. In fact, MC data and the 1RSB solution are
far from the frozen-ansatz solution. In particular, they show
nonzero value of the entropy at finite temperatures as shown
in the bottom of Fig. 4, which is quite different from that of
the frozen ansatz.
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For K=3, we do not plot the RS solution because we
cannot find it at low temperatures near n=0 except for the
paramagnetic one. This suggests that the 1RSB scheme
works even if the RS solution does not exist near n=0,
though we cannot rule out the possibility that our algorithm
for evaluating 7 is unstable to find the RS solution.

To see thermodynamic properties, we extrapolate our MC
data with finite sizes to the thermodynamic limit N — . Be-
cause finite-size correction terms and its exponent are a pri-
ori unknown in SG models, an extrapolation method itself
should be investigated. We assume that the leading finite-size
correction terms for the energy, free energy, and entropy are
expressed as

ey=e,+a,N®, (15)
In=fotaN"?, (16)
SN=Sot+aN"?, (17)

where e, f., and s, are the thermodynamic limit of the
respective quantities, and the correction exponent w is as-
sumed to be independent of the quantities.

As shown in the previous work [30], the ground-state en-
ergy of the Ising SG model for K=2 defined on a regular
random graph is scaled with w=2/3. Thus, we assume that
the exponent 2/3 holds for K=2 at finite temperatures and is
independent of physical quantities. Figure 6 show the ther-
modynamic quantities as a function of N~ for K=2 at T
=0.5, which is the lowest observed temperature. The data are
fitted well with the assumption w=2/3 as shown in the fig-
ure. The extrapolated values by the best fit and the results by
the 1RSB and the RS solutions are shown in Table III. The
thermodynamic values by MC results agree with those by the
IRSB solution rather than the RS one. The energy extrapo-
lated in a wide range of temperature is displayed in Fig. 7.
This also suggests that the 1RSB solution is consistent with
numerical results.

We turn to the case of K=3, where the value of w is not
known even at zero temperature. Although a naive way to
suppress higher order corrections is to study the system for
large sizes and/or at lower temperatures apart from critical
temperature, it has not been feasible to perform the MC
simulation below 7=0.5~0.7T, for N=240 in moderate
CPU time because of extremely slow relaxation especially in
the case of K=3. This is contrast to K=2 model. However,
for relatively smaller systems, the distribution function of the
energy is found to be almost a delta function with the weight
at the lowest energy. This implies that the distribution de-
pends weakly only on temperature 7 below 0.5. This fact
enables us to obtain the energy at temperatures down to T
=0.2~0.3T, using the reweighting method [28]. We evaluate
the correction exponent w for the energy by the least-squares
estimation at 7=0.2 and 0.5 with a form of Eq. (15). The
estimate of w is not compatible with w=2/3 used in the case
of K=2 and is rather close to w=1. This tendency is en-
hanced by omitting the smallest size N=30 from the analy-
sis. These findings suggest that w==1 and higher-order cor-
rections are not negligible.
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FIG. 6. (Color online) Energy, free energy, and entropy as a
function of 1/N?3 for a finite-connectivity Ising SG with K=2 and
C=4 at T=0.5. The filled squares are MC results, filled triangle is
1RSB solution, and filled circle is RS solution. In solid line, the
least square fitting of MC results assuming the exponent of the
leading finite-size correction w is 2/3 is presented.

Therefore, we extrapolate the MC result for K=3 by as-
suming the forms of Egs. (15)—(17) for w=1 with the next
leading correction term 1/N?. The data for N=30 are omitted
from the extrapolation analysis. Figure 8 shows the result of
the thermodynamic quantities for K=3 and C=4 at T=0.2.
The extrapolated values, presented in Table IV, are consis-
tent with those of the 1RSB solution by taking into account
the next leading correction term.

We also show the thermodynamic value of the energy for
K=3 as a function of T in Fig. 9. The extrapolated values by
the form including the next leading correction term are con-
sistent with those by the paramagnetic solution at 7>0.9 and
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TABLE III. Thermodynamic limit of the energy, free energy,
and entropy of a finite-connectivity Ising SG for K=2 and C=4 at
T=0.5. 1RSB and RS represent those estimated from the 1RSB
solution and the RS one, respectively. MC means the extrapolated
values from finite-size MC data by assuming a power law of the
leading correction with the exponent w=2/3.

MC 1RSB RS

€ ~1.4673(4)
Fo ~1.4922(4)
S 0.0501(9)
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FIG. 7. (Color online) Energy, free energy, and entropy as a
function of 1/N for a finite-connectivity Ising SG with K=3 and
C=4 at T=0.2. The points and solid line are the same as in Fig. 6.
Short-dashed and long-dashed lines represent the least-squares fits
for the form including the leading term of 1/N and up to the next
leading terms, respectively.
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FIG. 8. (Color online) Temperature dependence of the energy
for a finite-connectivity Ising SG for K=2 and C=4. The extrapo-
lated value from MC data is marked by filled square. The 1RSB,
RS, and paramagnetic solutions are represented by solid, long-
dashed, and short-dashed lines, respectively. The inset
is an enlarged view at low temperatures.

those by the 1RSB solution at low temperatures, though a
systematic deviation still remains around 7, because of the
critical fluctuation. As shown in the inset of Fig. 9, the agree-
ment between the extrapolated value and the value of 1RSB
solution is held at very low temperatures and the limiting
value of energy at zero temperature coincides with that ob-
tained by zero-temperature calculations [14,31-33]. For the
case of K=3, the result of the cavity method is also shown in
Fig. 9 [16]. Analytic results are in good agreement with the
MC data at low temperatures. These support the validity of
the scheme also for K=3.

Before closing this section, we would like to mention MC
algorithm for studying SG models. In recent works [16,34],
it is claimed that in annealing simulations a slow annealing
limit of the energy often leads to the isocomplexity energy,
significantly above the static equilibrium energy in glassy

-1.21

-1.25

02 03 04 05 06 07 08
T

FIG. 9. (Color online) Temperature dependence of the energy
for a finite-connectivity Ising SG for K=3 and C=4. The filled
squares and cross marks are the extrapolated value from MC data
with the extrapolation form including the leading correction term
and up to the next correction terms, respectively. The 1RSB, frozen,
and paramagnetic solutions are represented by solid, long-dashed,
and short-dashed lines, respectively. Long-short-dashed line is the
result of the cavity method in Ref. [16]. The isocomplexity energy
obtained in Ref. [16] is also shown by dotted line. The inset is an
enlarged view at low temperatures.
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systems. This has been confirmed for K=3 by an annealing
simulation [16]. In contrast, as shown in Fig. 9, the energy
extrapolated to the infinite-volume limit in our exchange MC
results is well lower than the isocomplexity energy and is
compatible with that of the 1RSB solution at low tempera-
tures. This suggests that the exchange MC is suitable for
equilibration of the SG system even when the system have
the isocomplexity energy separated from the static one.

IV. SUMMARY AND DISCUSSION

We have studied a construction of a 1RSB solution for
quench disordered systems. Our construction is based on
thermodynamic conditions for the cumulant generating func-
tion ¢(n) of free energy, which are derived as a necessary
condition in the replica analysis. The only requirement for
our construction is to obtain the replica symmetric solution
for ¢(n) as a function of n. This is a quite general scheme
which may provide a unified way to give a correct solution
for 1RSB systems. In fact, our scheme reproduces the well-
known 1RSB solution for fully connected mean-field SG
models such as p-spin model [10] and Potts glass model
[35]. As a nontrivial example we have applied our scheme to
study a 1RSB solution for finite-connectivity Ising SG mod-
els with K-spin interactions. The thermodynamic quantities
are explicitly evaluated from numerically obtained RS solu-
tion with finite replica number n using our scheme.

The saddle-point equations to be solved in our scheme are
found to be equivalent to recursion equations of the cavity-
field distributions in the 1RSB cavity formalism for this
model. In a sense, our scheme based on the replica theory
can be regarded as a reinterpretation of the 1RSB cavity
method. While the cavity method can predict the micro-
scopic detail of a model through complexity, which is an
interesting quantity in glassy physics, one cannot obtain such
a quantity with our scheme at present. This would be dis-
cussed as a remaining issue. In contrast, we can construct the
IRSB theory irrespective of details of the model, even
nonmean-field model in principle, because our scheme does
not rely on the microscopic details or complexity. Since the
pure state in finite dimensions is difficult to formulate in a
tractable manner, this complexity-independent formalism of
IRSB may be useful to investigate nature of RSB in finite
dimensions [36]. Because the replica method itself is origi-
nally independent of calculus of spin variables, this theoret-

TABLE IV. Thermodynamic limit of the energy, free energy, and
entropy of a finite-connectivity Ising SG for K=3 and C=4 at T
=0.2. 1RSB and frozen ansatz represent those estimated from the
1RSB solution and the frozen-ansatz one. MC means the extrapo-
lated values from finite-size MC data by assuming a form of xy
=x,+a;N~'+a,N2, where x=e, f or s.

MC 1RSB frozen ansatz
e -1.217(1) -1.2176(1) -1.2221
oo —-1.2180(8) -1.2188(1) -1.2221
Soo 0.005(2) 0.0058(5) 0
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ical flexibility would give another perspective if RSB is for-
mulated within macroscopic level. Therefore, we consider
that the cavity method and our method are complementary in
order to understand the nature of SG. The correspondence of
their results in this model has a significance because they
should provide the same result in the intersection of their
validity range.

Unfortunately, the validity of our IRSB solution could not
be established within the scheme because of the lack of AT
analysis. Some AT analyses for finite-connectivity models
are recently proposed in the previous works [18,31,37]. They
are to be resolved for our model and compared with each
other in future study. To confirm the validity of our scheme
in the present work, equilibrium MC simulations with the
help of extended ensemble method have been performed for
the model with K=2 and 3. It is shown that for K=2, the
resulting thermodynamic quantities by our scheme are in
agreement with those obtained by MC simulation within sta-
tistical error. For K=3, assuming that the size dependence of
the thermodynamic quantities is expressed as a polynomial
of N°', we have concluded that our 1RSB solution is also
consistent with those extracted from the finite-size MC data.
If we have the correction exponent w a priori, we can pro-
mote the accuracy of our extrapolation. Optimization tech-
niques for ground state search would be a promising ap-
proach for estimating the value of w for K=3.

As a by product of the MC simulations, it is found that a
coefficient of the first finite-size-correction term is positive.
Namely, the finite-size data reach their thermodynamic value
from above with increasing the system size. This suggests
that fluctuations on the positive side of the thermodynamic
value are relevant for the finite-size corrections in these mod-
els. On the other hand, the probability of large deviations
which can be calculated using the replica theory with n>0 is
the negative side for the free energy in the fully connected
SK model [38]. The replica theory with n<<0 for the large
deviations is required to evaluate the finite-size correction.

The key ingredient in our scheme for constructing the
IRSB solution is the thermodynamic constraints as a neces-
sary condition in the replica theory. This is compared to the
fact that the standard replica method introduces RSB scheme
through the symmetry of the saddle point. Another thermo-
dynamic constraint, thermodynamic homogeneity, has been
discussed in Ref. [39]. One might stress the importance of
such a thermodynamical approach which leads to universal
framework irrespective of microscopic models. Actually, our
scheme is rather general and quite simple. It only needs the
function ¢gg(n) which is constructed in the way of replica
symmetric analysis. Thus, we can avoid the arbitrariness to
introduce breaking parameter in the replica theory. One can
find further applications in related statistical-mechanical sys-
tems in which the RS solution can be constructed.
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APPENDIX: ALGORITHM FOR EVALUATING 7 AND 7

In this appendix, we explain details of the numerical
method we used to solve the saddle point Egs. (9) and (10).
We use an iteration method, introduced in Ref. [40]. The
saddle-point functions 7(x) and 7(X) are approximated by a
large M number of samples from 7r and 7. The algorithm for
evaluating the function 7(x) and 7(%) is as follows:

(1) Give an appropriate array h;(i=1,2,-+-M) as an initial
condition to .

(2) Sample K—1 independent values of {x;} (k=1,---,K
—1) from 7(x) by generating a random integer / uniformly
distributed from 1 to M and setting x,=h;, and evaluate X
=é atanh{tanh BI1{"tanh(Bx,)}.

(3) Put the sign chosen with probability 1/2 to £ and get
fz,-:)?, which corresponds to a sample of 7.

(4) Repeat the steps 2 and 3 M times and obtain the M

samples of #, {h;}.
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A
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FIG. 10. A saddle-point function m(x) for K=3, C=6, T=0.75,
and n=0.713.

(5) Sample C—1 independent values of {£ }(y=1,---,C
—1) by a procedure similar to that of step 2 and evaluate x
=318,

(6) Accept x obtained in step 5 with probability

anlc_l)(l'lg_:ll{l+tanh(ﬂ)€y)}+H§___11{1—tanh(ﬁf,/)})” and accu-
mulate the next set of {h;} of 7 till the number reaches M.
(7) Return to 2.
We iterate the above procedures until convergence. The
number of the samples is set typically as M=10° in our cal-

culation. A typical form of 7(x) is displayed in Fig. 10.
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